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Abstract. We explicitly construct the quantization of classical linear maps ofSL(2, R) on
toroidal phase space, of arbitrary modulus, using the holomorphic (chiral) version of the
metaplectic representation. We show that finite quantum mechanics (FQM) on tori of arbitrary
integer discretization, is a consistent restriction of the holomorphic quantization ofSL(2, Z)

to the subgroupSL(2, Z)/0l , 0l being the principal congruent subgroup modl, on a finite
dimensional Hilbert space. The generators of the ‘rotation group’ modl, Ol(2) ⊂ SL(2, l),
for arbitrary values ofl are determined as well as their quantum mechanical eigenvalues and
eigenstates.

1. Introduction

A most fascinating branch of mathematics, number theory [1], has quite unexpectedly made
its appearance in a variety of research areas in physics the last 15 years. In classical and
quantum chaos [2–5], localization in incommensurate lattices [6], classification of rational
conformal field theories [7, 8], in string theory [9], etc (cf also [10]).

On the other hand, number theory, as is well known, has been an important tool in
theoretical computer science (algorithms, cryptography) and also signal processing for many
years [11, 12].

Motivated by recent work on the information paradox of black holes [13], as well as by
indications that string theory predicts an absolute minimum distance in nature of the order
of M−1

Planck ≈ 10−33 cm [14], two of the authors reconsidered the ancient question of why
nature has to use real and complex numbers once there is a fundamental unit of length.
They proposed to study quantum mechanics over finite sets of integers with the structure of
finite algebraic fields, eventually hoping to be able to formulate field and string theories over
them [15], which theories possess the property of containing finite information per unit of
physical volume. The basic obstacle here is that these number fields cannot accommodate
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metric structures and the notion of dimension. The very difficult task, then, is to reproduce,
at scales much larger than the Planck scale, quantum physics as we know it.

In this note we take a first step in connecting finite quantum mechanics (FQM) [16] to
a continuum quantum mechanics of a rather particular type. Indeed we show that FQM is
a consistent andexact discretization of holomorphic quantum mechanics on toroidal phase
spaces for arbitrary moduli, thereby establishing a possible link to rational conformal field
theories on the torus. We extend the work of [15] to torus discretizations of any length.

The plan of the paper is as follows: in the next section we review holomorphic quantum
mechanics on the (continuum) torus; we then discuss finite quantum mechanics and end by
discussing some properties of harmonic oscillator eigenfunctions on these spaces and further
perspectives.

2. Holomorphic quantum mechanics

We start by describing holomorphic quantum mechanics on the torus [17] (cf also Leboeuf
and Voros in [5]). The torus of the complex modulusτ ∈ C is defined as the coset space
0 = C/L, whereL is the integer latticeL = {m1 + τm2|(m1, m2) ∈ Z × Z}. The torus0
is the set of points of the complex planeC, z = q + τp, q, p,∈ [0, 1]. The symplectic
structure ofC induces on0 the (symplectic) form

� = − 1

2i
dz ∧ dz = τ2 dq ∧ dp (1)

whereτ = τ1 + iτ2. The corresponding group of symplectic transformations isSL(2, R)

acting on(q, p) mod 1 [2]. To define holomorphic quantum mechanics on0 we start by
the classical evolution in the phase space0 under elements ofSL(2, R). The most general
quadratic Hamiltonian

H = τ2

2
(q, p)

( −c a

a b

) (
q

p

)
(2)

leads to the evolution equations

d

dt
(q, p) = (q, p)

(
a c

b −a

)
(3)

which are immediately integrated to

(q(t), p(t)) ≡ (q(0), p(0))R(t) mod 1 (4)

with R(t) ∈ SL(2, R) given by

R(t) = exp

[
t

(
a c

b −a

)]
. (5)

The quantum mechanicalevolution, with Weyl ordering as in (2), is also simple and leads
to

(q̂(t), p̂(t)) = (q̂(0), p̂(0))R(t). (6)

The position and momentum operators,q̂ and p̂ satisfy

[q̂, p̂] = ih̄

τ2
. (7)

From (6) and the Heisenberg equations of motion we have that

U(t)(q̂(0), p̂(0))U−1(t) = (q̂(0), p̂(0))R(t) (8)
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with U(t) the evolution operator

U(t) = exp

[
it

h̄

τ2

2
(q̂, p̂)

( −c a

a b

) (
q̂

p̂

)]
. (9)

This last relation, as we shall see, defines a representation ofSL(2, R). The Hilbert space
of quantum mechanics on the torus0 consists of functions (to be more precise this is a
space of sections of aU(1) bundle over0) given by series

f (z) =
∑
n∈Z

cneiπn2τ+2π inz (10)

with norm [19]

‖f ‖2 =
∫

e−2πy2/τ2|f (z)|2 dx dy τ2 > 0. (11)

On this space consider the action of the operatorsSb andTa

(Sbf )(z) = f (z + b) ∀f ∈ H0

(Taf )(z) = eiπa2τ+2π izf (z + aτ) a, b ∈ R
(12)

which satisfy the fundamental Weyl commutation relations (CR), the integrated form of
Heisenberg CR,

SbTa = e2π iabTaSb. (13)

The operatorsS andT are so chosen that the classical Jacobi theta function [19]

θ(z|τ) =
∑
n∈Z

eiπn2τ+2π inz (14)

is invariant underS1 andT1.
The spaceH0 carries an infinite dimensional, unitary, irreducible representation of the

Heisenberg group defined as

W(λ, a, b)f = λTaSbf λ ∈ U(1), a, b ∈ R, ∀f ∈ H0 (15)

with composition law

W(λ, a, b)W(λ′, a′, b′) = W(λλ′e2π iba′
, a + a′, b + b′). (16)

In holomorphic quantum mechanics on the torus [17],q̂ and p̂ are given by

q̂ = −i∂z p̂ = −2πz + iτ∂z (17)

and thus

S1 = eiq̂

T1 = e−ip̂
(18)

where we have chosen ¯h = 2πτ2.
We are ready now to describe the metaplectic representation ofSL(2, R) on the space

H0. For every(q, p) ∈ 0 the evolution operator,U(t), (cf (9)), satisfies the relation (cf
(8), (5))

U−1
R (t)Jq,pUR(t) = J(qp)R(t) (19)

where

Jq,p ≡ ei(−qp̂+pq̂) (20)

is an element of the Heisenberg group acting onH0.
The metaplectic representation [17, 20] ofSL(2, R) is defined by (19) and, in general,

is a projective representation.
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3. Finite quantum mechanics

We now recall the basic features of FQM and its relation to the holomorphic QM.
The torus phase space has been the simplest prototype for studying classical and quantum

chaos [2–5]. Discrete elements ofSL(2, R), i.e. elements of the modular groupSL(2, Z),
are studied on discretizations of the torus with rational coordinates of the same denominator
l, (q, p) = (n1/l, n2/l) ∈ 0, n1, n2, l ∈ Z and their periodic trajectories mod 1 are examined
studying the periods of elementsA ∈ SL(2, Z) modl. The action mod 1 becomes modl on
an equivalent torus,(n1, n2) ∈ l0. The classical motion of such discrete dynamical systems
is usually ‘maximally’ disconnected and chaotic [3, 5].

FQM is the quantization of these discrete linear maps and the corresponding one-time-
step evolution operatorsUA arel × l unitary matrices calledquantum maps. In the literature
[4, 5] these maps are determined semi-classically. In [15, 16] the exact quantization of
SL(2, Fp), whereFp is the simplest finite field ofp elements withp a prime number was
studied in detail. In the following we shall extend the results of [15] tol = pn and we shall
discuss the case of arbitrary integerl.

Consider the subspaceHl(0) of H0 with periodic Fourier coefficients{cn}n∈Z of periodl

cn = cn+ln ∈ Z l ∈ N. (21)

The spaceHl(0) is l-dimensional and there is a discrete Heisenberg group [18], with
generatorsS1/l andT1 acting as [17, 19]

(S1/lf )(z) =
∑
n∈Z

cne2π in/le2π inz+π in2τ

(T1f )(z) =
∑
n∈Z

cn−1e2π inz+π in2τ cn ∈ C.
(22)

On thel-dimensional subspace of vectors(c1, . . . , cl) the two generators are represented by

(S1/l)n1,n2 = Qn1,n2 = ω(n1−1)δn1,n2

(T1)n1,n2 = Pn1,n2 = δn1−1,n2

(23)

with ω = exp(2π i/l). The Weyl relation becomes

QP = ωPQ (24)

and the Heisenberg group elements are

Jr,s = ωrs/2P rQs. (25)

In the literature the metaplectic representation ofSL(2, l), (the group of 2× 2, integer
valued matrices modl), is known forl = pn [21]†.

The Weyl–Fourier form ofUA is [16]

UA = σ(1)σ (δ)

p

p−1∑
r,s=0

e
2π i
p

[br2+(d−a)rs−cs2]/2δJr,s (26)

where

A =
(

a b

c d

)
∈ SL(2, Fp) δ = 2 − a − d

σ(a) = 1√
p

p−1∑
r=0

ωar2 = (a|p)p

(27)

† The representation theory of the symplectic groupSL(2, Fpn ) may be found in [22].
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(a|p) is the Jacobi symbol [1] and

p =
{

1 p = 4k + 1

i p = 4k − 1.

All the operations in the exponent are carried out in the fieldFp. If δ ≡ 0 modp we
use the trick (

a b

c d

)
=

(
0 1

−1 0

) (−c −d

a b

)
(28)

and the fact thatUA is a representation (cf [16]).
In [15] the eigenproblem for the generators of the ‘rotation subgroup’ ofSL(2, Fp),

O2(p), was solved and an explicit list of the generatorsR0 for primesp < 20 000 was
given. The spectrum ofR0 is linear and all the eigenvectors, which are real, were found
analytically for primesp = 4k + 1. In fact they are appropriately weighted Hermite
polynomials over the finite fieldFp [15, 23]. All of them turned out to be extended, in the
sense that their support is the full setFp and their components randomly distributed.

The first step to generalize the results of [15] forOl(2) is to consider integersl = pn,
powers of primes. We shall need the explicit form ofUA for l = p because this is
immediately generalized tol = pn

(UA)n1,n2 = 1√
p

(−2c|p)pω−[a(n1−1)2+d(n2−1)2−2(n1−1)(n2−1)]/2c (29)

for c 6≡ 0 modp (otherwise apply (28)).
Imposing (26) forl = pn we need the Gauss sum†

G(k, l) = 1√
l

l−1∑
r=0

e2π ikr2/l . (30)

It enjoys the property

G(k, pn) = pG(k, pn−2) (31)

which implies that

G(k, p2m) = pm (32)

so, forn = 2m,

(UA)n1,n2 = 1√
p2m

exp

[
−

(
2π i

p2m

[
a(n1 − 1)2 + d(n2 − 1)2 − 2(n1 − 1)(n2 − 1)

]
/2c

)]
(33)

with c 6≡ 0 modp. For odd powers ofp, n = 2m + 1,

G(k, p2m+1) = pmG(k, p) (34)

so we have only to replacep by p2m+1 in (29) and 1/2c is taken modp2m+1.
The above results can be deduced also from the work of Tanaka [21] on the

representations ofSL(2, pn).
For practical calculations of spectra and eigenvectors ofOpn(2) for various primes

one has to determine the corresponding generatorsR0. Here we explicitly present their

† A complete study of this sum for arbitrary integerl can be found in the chapter ‘Cyclotomic Fields’ of Lang
[1]; cf also [24].
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construction. In [15]R0 was found in the case ofp = 4k + 1 once a primitive element of
Fp, g, is given.

R0 =

 g + g−1

2

g−1 − g

2t
g − g−1

2t

g + g−1

2

 . (35)

Here t ≡ gk modp, t2 ≡ −1 modp and all operations in the entries of (35) are performed
modp.

The set of integers modpn does not form a finite field, but there is a multiplicative
subgroup, composed of all the integers,6≡ 0 modp. A known theorem states that, ifgp−1 6≡
1 modpn, theng is a generator of this cyclic group with the order ofφ(pn) = pn −pn−1. If
p = 4k+1, φ(pn) is divisible by 4 and there is an elementt (t2 ≡ −1 modpn), t ≡ gφ(pn)/4.
In this caseR0 is given by (35) where all the operations are modpn.

In the casep = 4k − 1 we need to know a primitive elementw = w1 + iw2 of Fp2

[16, 15]. The corresponding generator ofOp(2) is

R0 =
(

u1 u2

−u2 u1

)
u1 + iu2 = w2

g
g = ww ∈ Fp

(36)

herew = w1 − iw2 ≡ wp modp andg can be shown to be a primitive element ofFp. A
list of R0 andw for all primesp = 4k − 1 < 20 000 can be found in [15].

For l = pn, p = 4k −1, we can find primitive elementsw ∈ Fp2 such thatg = ww has
the propertygp−1 6≡ 1 modp and the corresponding generatorR0 is given by (36) where
all the operations are performed modpn.

From the above one can find that, forl = pn = (4k + 1)n the period of the generator
is φ(pn) = pn − pn−1, while, for l = pn = (4k − 1)n, the period ispn + pn−1.

For arbitraryl = ∏s
i=1 p

ni

i SL(2, l) = ⊗s
i=1SL(2, p

ni

i ) [1, 7], It is known thatSL(2, l)

is the coset spaceSL(2, Z)/0l , where0l is the set of matricesA ∈ SL(2, Z), such that
A = ±I modl. This is a normal subgroup ofSL(2, Z) and is called theprincipal congruent
subgroupmodl. It plays an important role in the geometry of Riemann surfaces and the
classification of modular forms (cf the article by Zagier [10]).SL(2, l) consists ofnested
sequences, in the sense thatSL(2, l) ⊂ SL(2, l′) when l′ ≡ 0 modl.

The metaplectic representation, (26), can be extended to anyl, onceδ = 2 − a − d 6≡
0 modpi (for anypi); the Gauss sums can be easily evaluated (cf Lang [1])—unfortunately,
there is no simple,unique answer for arbitraryA ∈ SL(2, l). For the class ofA’s, of the
form

A =
(

even odd
odd even

)
or A =

(
odd even
even odd

)
. (37)

Hannay and Berry [4] have written down the semiclassical form ofUA. It is not difficult to
see that the metaplectic representation, (26), leads to the same results. For the other forms
of A the answer forUA does not have the same form for alll. Our main interest is the
harmonic oscillator subgroup,Ol(2) ⊂ SL(2, l). As we mentioned before,SL(2, l) can be
decomposed into a tensor product ofSL(2, p

ni

i ), i = 1, . . . , s over the prime factors ofl.
The same happens forOl(2), which is an Abelian group, withs cycles and with generators
R0(p

ni

i ). Its representations may thus be obtained by tensoring powers ofUR0(p
ni
i ).
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4. Perspectives

We discuss finally the construction of the eigenstates of the harmonic oscillator subgroup
(modl). These are presumably the building blocks of field theories (and string theories) on
discretized toroidal phase spaces. It is enough to determine the eigenstates (and eigenvalues)
of Opn(2) for any primep and (positive) integern. From the construction ofR0 and their
diagonalized form(

a b

−b a

)
= L

(
a − tb 0

0 a + tb

)
L−1 a2 + b2 ≡ 1 modpn (38)

where

L = 1

2t

(
1 1
−t t

)
(39)

with t2 ≡ −1 modpn,
√

2t ≡ (1 + t) modpn, we diagonalize the correspondingU1, where

1 =
(

a − tb 0
0 a + tb

)
.

As was shown in [15],U1 is a circulant matrix for l = p (and the same happens here
as well, in each sectorpn) for p = 4k + 1: its first row is e1 = (1, 0, . . . , 0) and each
subsequent row has the element 1 shifted byg−1 modpn positions to the right from the last.
The eigenvectors ofU1 are easily found to be the multiplicative characters of the set of
integers modpn, extending the results of [15]. The eigenvalues ofU1 are roots of unity,
of orderpn − pn−1 andpn−1 of them must be degenerate.

For p = 4k − 1, it is possible to finddirectly the corresponding eigenvectors ofU1.
They are the multiplicative characters of the rotation groupOpn(2), while the eigenvalues
are roots of unity of the order ofpn + pn−1.

We close this note by writingUA, A ∈ SL(2, l), in terms of holomorphic operators on
Hl(0). Define the elements of the Heisenberg group

Jr,s = exp(i[−rp̂ + sq̂]) r, s = 1, . . . , l (40)

with

p̂ = −2πz + iτ∂z

q̂ = −i

l
∂z

[q̂, p̂] = 2π i

l
.

(41)

In (26) we substituteP andQ with T1 andS1/l respectively and carry out first the summation
over s and then overr. We end up with

UA = exp

(
−2π i

l

δ

2b

(
l

2π
p̂

)2)
exp

(
−2π i

l

1

2b

[
(1 − a)

l

2π
p̂ + b

l

2π
q̂

]2)
(42)

where the operators in the exponents have integer eigenvalues. We assumeδ, b 6≡ 0 mod
p.

Finally we address the issue of localization of the eigenstates ofUR0 for the harmonic
oscillator. Forl = pn this operator is represented by apn × pn unitary matrix of period
pn ∓ pn−1 for p = 4k ± 1.

Higher powers ofR0 (higher degeneracy butsmaller period) have classical orbits that
are localized in phase space (intuitively understandable: since the period is smaller the orbits
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wander less in phase space)—and the quantum eigenstates follow suit. A nice example is
provided by the finite Fourier transform; setF = Rφ(pn)/4

0 , with F4 = I . The quantum map
UF, the finite Fourier transform, is known to possess localized eigenstates [25]

ϕk(j) =
(

∂

∂x

)k
[

exθ

(
j

l
− x

√
2

πl

∣∣∣∣τ = i

l

)] ∣∣∣∣
x=0

j = 0, 1, . . . , l − 1; k = 0, 1, . . . .

(43)

These states are not orthogonal and, surprisingly, are discrete approximations of the
continuum harmonic oscillator states.

The ground state,ϕ0(j), is a Gaussian and the action ofUR0 on it is maximally
dispersive. However, sinceUR0 has a finite period, the evolution of the ground state is
periodic.

We end with some open problems. The above findings suggest that the naive continuum
(not classical) limit of the eigenstates ofUR0 does not lead to sensible results for integer
sequences,ln = pn, for a fixed primep andn = 1, . . .. For most of the extended states, this
limit exists in the Hilbert spaceH0 and is zero, since

∑l
m=1 |cm|2 = 1 andcm ≈ O(1/

√
l);

it may be possible to find suitable sequences,URrn
0

, such that only some localized states
survive in the limit. On the other hand, from the construction of thep–adic numbers,Qp

andSL(2, Qp) [9], it is known that there does exist another ‘continuum’ limit, in thep–adic
numbers, which is calledprojectiveand is related top−adic quantum mechanics forpn,
n → ∞ (cf Meurice [9] and references therein). However, the relation between the finite
fields and thep–adic numbers is far from obvious and the relation between our construction
and that valid for thep–adics not known at the moment.

For higher dimensional phase spaces the construction of the metaplectic representations
of the symplectic group,Sp(2D, l) (whereD is the dimension of the space), follows similar
lines.

Regarding ‘practical’ applications, the eigenstates ofUR0 can be used to construct finite,
orthogonal sets of wavelets over finite fields [15], appropriate for analysinglocal time-
frequency or position-scale statistics of images. Another area is coding theory (especially
cryptography). Some standard codes are linear or polynomial transformations over finite
fields [12]. Our present work could be useful in ‘quantizing’ linear codes or writing codes
executable by quantum computers [26] as well as implementing algorithms for specifically
quantum computation [27].
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